
890 V. N. Rubanovskfi and S. Ia. Stepanov 

5, Rumiantsev, V. V., On the Stability of the Steady Motions of Satellites. 
Moscow, Vychislitel’nyi tsentr, Akad. Nauk SSSR, 1967, 

6. Moiseev, N. N. and Rumiantsev, V. V., Dynamics of a Body With Fluid- 

Containing Cavities. Moscow, “Nat&a”. 1965. 

7. Pozharitskil, G, K., On the construction of the Liapunov fnnctions from the 
integrals of the equations of perturbed motion. PMM Vol. 22, NY2, 1958. 

8. Arnol’d. V. I., Variational principle for three-dimensional steady-state flows 
of an ideal fluid. ‘PMM Vol. 29, No5, 1965. 

9. Kunitsyn, A. L., A qualitative study of motions in a certain limiting variant 
of the problem of two fixed centers. Tr.Univ. druzhby narodov im. Patrisa 

Lumumby, Teoreticheskaia mekhanika Vol. 1’7, Np4, 1966. 

10. Volterra, V., Sur la thdorie des variations des Latitudes, Acta math. Chap. 3, 

t. 22,(pp. 257-273), 1899. 
II. Duhem, P., Sur la stabilitk, pour des perturbations quelconques, d’une systkme 

animk d’un mouvement de rotation uniforme. J. Math. pines et appl., Ser. 5, 

t. 8, p. 5. 1902. 
l.2. Rumiantsev, V. V,, On the stability of steadystate motions. PMM Vol. 32, 

Np3, 1968. 

13. Duhem, P., Traitd d’energetique ou de thermodynamique g&&ale. t. 2, Paris, 

Gauthier-Villars, 1911. 

14. Shostak. R. Ia., On the criterion of nominal definiteness of a quadratic form 
of n variables subject to linear constraints, and on a sufficient criterion of a 

nominal extremum of a function of n variables. Usp. matem. n. Vol. 9, N2, 

1954. 
15. Kus’min, P. A., Steady motions of a solid body and their stability in a central 

gravitational field. In: Proceedings of the Inter-VUZ Conference on the Applied 

Theory of Motion Stability and Analytical Mechanics.(pp. 93-99), Kazan, 1964. 
16. Pozharitskii, G, K., On the stability of permanent rotations of a rigid body 

with a fixed point located in a Newtonian central force field. PMM Vol. 23, 

NQ4, 1959. 
Translated by A.Y. 

PE~ODI~ SOL~IONS OF SECOND ORDER Dads SYST~ 

CLOSE TO P~E~E-~S~ HEDONIC SYSTEM 
PMM Vol. 33, N%, 1969, pp. 912-915 

N. N. SEREBRIAKOVA . . 

(Receiv$%$%, 1969) 

We show the conditions which must be satisfied by the approximating functions, in order 
that the result known for the nearly Hamiltonian systems with the analytic right sides 
[l] would also hold for the systems with piece-wise analytic right sides. 

Theorem. Let H (5, y) = h be a family of closed curves Ch dependent on the 

parameter h, and matched from segments Hi (z, y) = h on the intervals % < 2 d zi i 1. 
Functions Hi (z, y) are analytic in each of their arguments. 

Then a unique limit cycle exists in the neighborhood of the closed curve Ch,+ for the 
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system 
5’ = H,,’ (z, y) + pp (5, y), y’ = - H,z' (2, Y) + in; !T Y, (1) 

when p # 0, provided that aH J 8~ is continuous at the points of matching x = xi. 
Here p (5, y) and g (5, y) are functions, analytic on each of the intervals q < 3: g 

<xi+13 and h,’ is a root of the equation 

Y (h”o)s _ c q (cc, y) dx - P (2, y) dy = 0, ‘P’ (ho”) #O 

The limit cycle will be stable when Y’ (c) < 0 and unstable when ‘9’ (h%O) > 0. 

PI o o f, Let denote by Sy) the half-lines 5 = S* for y > 0, and by S!,2) the half- 
lines z = ~4 for 31 < 0 and let us consider the phase trajectories of the system (1) for 
the cases p = 0 and p # 0, both satisfying the same initial conditions 

5 = Z%, Y = !fo when t = 0 (2) 

Assuming that the trajectory of the system (1) satisfying the conditions (2) intersects 
the half-lines Sp) at the points P I$ (q, !&! when 11 = 0 and at the points Pf) (q, 

&j’) when P # 0 , we shall first prove that a point transformation of the half-line S$) 
in;o the half-line St) has the form (xr 11&(l)) 

yk 
(1) - 

-ykO 
(1) + P ‘1 af$_,(xk~Ym(‘))/dY (r,“Ir f 

cr(~rY)dx-~(~,y)dy+~2(...) (4 
. 0 

provided that the function 8H I ay is continuous at x = xi. 

Let us consider the point ~ansformation of the half-line St” into the half-line S(,‘). 
When p = 0,solution of (1) satisfying the conditions (2) can be written as 

d = ro(ho* t + rp& Y = Yo(ho, t -t rp%) (20 < 2 < 21) (4) 

(h,, ‘p% = const) 

We shall seek a solution of the system (I) in the case of p # 0 in the form 

I = z,[o%(t), t + B&)1 = Ed4 

Y = y%[oo($ t + B&l = rlo (t) 

(5) 

where so(t) and PO(l) are some functions of time 2. 

Inserting (5) into (1) we obtain 

@YO da% aY% 4% -- --= 
itao dt $- af3, dt P? IS0 (% qo(91 

Taking into account that 

8x0 aHo K%(t), no(t)1 aY% aH% [Co ($ ?%V)l 

?$&= 
-=- 

aY ' ape ax 

we obtain from (6), 
dy0 -- 
& - P { 

dp% -_ 
& - p P th@, qOtt)l $ - q [tO(% q%(t)] ~} 

Functions so(t) and B%(t) should satisfy the following initial conditions: 
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a,(t) = ho, f&,(t) = ‘p. when 1 = 0 

Writing a,(t) and /&(t) in the form of power series in CL, we obtain 

so(t) = ho -it paol(t) -t PY...), PO(t) = ‘PO + PBodQ + P”(**-) 
t 

a01 PI = S( Q Ko (Q7 rloV)l $- P [So(t), rlo(91 $y),_o a 
0 

(9 

(In the following, the expression for PO1 (t) shall not be required). 
Let t = t, be the shortest time in which the representative point moving along the 

trajectory of (1) can reach the half-line Sy’ at the point (zr&fl’)- 

Substituting t = t, into (5) and expanding the resulting relations into power series in 

.v, we obtain $1 = $0 + P&l + P?...) 

21 = xopo, ho + cpof + I” i 2 ItI1 4 PO1 WI + $01 (t) ),_, + P” (*..I 
- I. 

~=,, 
1/l(') = YlO(') + CL 

{ 
2 [tll + potp)] + g a01 (t) 

1 /=I,, p.4' 
+ 112 (...) 

which, on eliminating t,, -I- Pol(tro), yield 
(Xl, ?/.u(‘)) 

?,$I) = 7&o(‘) + P 
aH0 (-tl YliP)/$f s 

q(“,Y)da:-_p(z,y)rlY+... (3 
I 1 

f%, El,) 

The integral is taken along the curve of the system (1) passing through the point 

(10, YC) with P = 0 , 

Let us now consider the point transformation, taking the half-line St) into the half- 
line 8:“. We shall represent the solution of (I ) satisfying the conditions 

in the form 
x== x1, y=yp) when t= t, (10) 

2 = X,(hl, t -t cpl), Y = !l,(W + WI (11) 
when n -= 0 , and in the form 

5 = .z,ladt), t + IWI z W), Y = dal(t), t -I- i%(t)1 E q,(t) 

when P # 0 . 

(12) 

Writing a,(t) and J3r(t) in the form of power series in p,Ne obtain 

a,(t) = h, + pa,,(t) -k p?...), l&(t) = ‘01 + Pfhft) -t Ic2 (--s) (13) 

Let t = t2 be the instant of time, at which the representative point moving along the 
trajectory of (1) reaches the half-line 8:). 

Inserting t = t, into (12) and expanding the resulting expressions into power series 
in CL, we have t, =Y t,, -t pt21 + p*(...) 

h,= ho f Ph, -I- P2(...). 'p1= 'PlO + Wll + p*(...) 

from which, taking into account the fact that 
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and using (9). we obtain 
(Xl, ?kJW 

?&(‘) = y# + E” 
aHI@% Yed’)) / aY L 1 Q(GY)ds- P(r*y)dY + 

(Xl, U*o(‘)) 

+ 
a HI (21, YIO?)) / a~ 

(Xl, 4)) 

aHo(zl, yro ‘l’)/aY s 
q(r,Y)dz-P((x,Y)~Y +p2t..4 I (14) 

(* vf 
01 0 

Here the integrals are taken along the curve c h0 passing through the point P&O, ~~1, 

and h, = Rob, ~~1. 
If the function aH f ay is continuous at x = xi, then 

aHr(x1, y$) I ay = @a@,, Yf$, I & 

and the expression (14) can be written in the form of (3) with k = 2. 
Assuming now that the formula (3) is true for the transformation of the half-line St’ 

into the half-line Sftr, we can show that it is also true for the transformation of Sk*) 

into St’, provided that the function 8H / ay is continuous at x = xi. 
Similarly, assuming the continuity of the function aH / ay we can show that relation 

(3) holds for the transformation of S$*) into Sf’ (with the representative point passing 

through the straight line y = 0) , provided that i?H,_, (q., yki’) / ?y is replaced by 

bHk (sp &,‘)/a~, and the superscripts tl) by (sf. 
Everything that has been said above concerning the transformation of the half-line 

St) into SF) , also holds for ~ansformation of the half-line Svf in the lower semiplane 

into the initial half-line ,$) in the upper semiplane. 
Point transformation of the half-line Sv) into itself in the neighborhood of the closed 

curve C,, passing through the point P,(s,, yo), has the form 
n 

yo(‘j = yo + I-L 
~HO (2’0, YO) I a~ I q(5,Y)~~-P(~7Y)~Y-t. (‘5) 

ch 
0 

P 
+p2(**.)=yo+ dH~(xo,yo)/ay Y(ho)CY2(...) 

Clearly, if 
Y(h,O) = 0, Y’(h,“) # 0 

then the transformation (15) has a unique fixed point PC&%, $0’ •k pyr), which tends to 
the point PI&,, yo”) as p -, 0 (ho” = H&Q, ~0”)) - 

At the same time system (I.) has a unique limit cycle situated near the curve C&,” , 
which tends to this curve for p -+ 0. 

Koenigs’ theorem @] implies that the fixed point P&z,, YC,* -k P!&) and the corres- 

ponding limit cycle are stable if Y’(h,‘) < 0 and unstable, if Y’(&‘) > 0. 
If the functions ar-zldx, aHiay, p(~,y) and q(x,y) are 2 n-periodic in 5 then the phase 

space of the system (1) will be periodic with two straight lines x = x0 and x = x0 + 2.2 
coinciding. The theorem proved above gives, in this case, the conditions of existence 

and stability of the limit cycle of (1) enveloping the phase cylinder. 
The author expresses her gratitude to N. N. Bautin for valuable advice. 
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